Autonomous first order differential equations

نویسندگان

چکیده

The problem of algebraic dependence solutions to (non-linear) first order autonomous equations over an algebraically closed field characteristic zero is given a ‘complete’ answer, obtained independently model theoretic results on differentially fields. Instead, the geometry curves and generalized Jacobians provides key ingredient. Classification formal are treated. applied answer question $D^n$-finiteness differential equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Order Partial Differential Equations

If T⃗ denotes a vector tangent to C at t,x,u then the direction numbers of T⃗ must be a,b, f. But then (1.2) implies that T⃗ n⃗, which is to say, T⃗ lies in the tangent plane to the surface S. But if T⃗ lies in the tangent plane, then C must lie in S. Evidently, solution curves of (1.2) lie in the solution surface S associated with (1.2). Such curves are called characteristic curves for (1.2). W...

متن کامل

First order partial differential equations∗

2 Separation of variables and the complete integral 5 2.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The envelope of a family of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 The complete integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Determining the characteristic strips from t...

متن کامل

Rational solutions of first-order differential equations∗

We prove that degrees of rational solutions of an algebraic differential equation F (dw/dz,w, z) = 0 are bounded. For given F an upper bound for degrees can be determined explicitly. This implies that one can find all rational solutions by solving algebraic equations. Consider the differential equation F (w′, w, z) = 0, (w′ = dw/dz) (1) where F is a polynomial in three variables. Theorem 1 For ...

متن کامل

Introduction to First-Order Differential Equations

where we understand that y is a function of an independent variable t . (We use t because in many examples the independent variable happens to be time, but of course any other variable could be used. In current versions of Maple, the dependence of y on t must be explicit, i.e., one must write y(t).) It is sometimes convenient to use informal notation and refer to this example as y′ = 0 (a physi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2021

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8515